Abstract

A new algorithm is suggested for prediction of a Lagrangian particle position in a stochastic flow, given observations of other particles. The algorithm is based on linearization of the motion equations and appears to be efficient for an initial tight cluster and small prediction time. A theoretical error analysis is given for the Brownian flow and a stochastic flow with memory. The asymptotic formulas are compared with simulation results to establish their applicability limits. Monte Carlo simulations are carried out to compare the new algorithm with two others: the center-of-mass prediction and a Kalman filter--type method. The algorithm is also tested on real data in the tropical Pacific.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.