Abstract

Given a graph $G$, the longest path problem asks to compute a simple path of $G$ with the largest number of vertices. This problem is the most natural optimization version of the well-known and well-studied Hamiltonian path problem, and thus it is NP-hard on general graphs. However, in contrast to the Hamiltonian path problem, there are only a few restricted graph families, such as trees, and some small graph classes where polynomial algorithms for the longest path problem have been found. Recently it has been shown that this problem can be solved in polynomial time on interval graphs by applying dynamic programming to a characterizing ordering of the vertices of the given graph [K. Ioannidou, G. B. Mertzios, and S. D. Nikolopoulos, Algorithmica, 61 (2011), pp. 320--341], thus answering an open question. In the present paper, we provide the first polynomial algorithm for the longest path problem on a much greater class, namely on cocomparability graphs. Our algorithm uses a similar, but essentially simple...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.