Abstract

The fundamental Child–Langmuir limit on the maximum current density in a vacuum between two infinite parallel electrodes is one of the most well known and often applied rules of plasma physics. We develop a simple model using vacuum capacitance, conservation of energy, and conservation of charge to derive the Child–Langmuir space-charge-limited emission. This capacitive model provides physical insight into the origins of the well known (voltage)3/2/(gap distance)2 scaling of the classical current density and does not require the solution of the nonlinear differential equation normally associated with the Child–Langmuir formulation. In addition, the full spacecharge-limited solution is reproduced without imposing the condition that the electric field be driven to zero at the cathode surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.