Abstract

This research aims to develop a simple paper-based device for arsenic detection in water samples where a hydride generation technique coupled with mercaptosuccinic acid-capped CdTe quantum dots (MSA-CdTe QDs) as a detection probe was applied to the detection system. MSA-CdTe QDs were coated on a paper strip, inserted into the cover cap of a reaction bottle, to react with the developed arsine gas. Fluorescent emission of the QDs was quenched upon the presence of arsenic in solutions, whereby only a small amount of the MSA-CdTe QDs was required. The excitation and emission wavelengths for fluorescent detection were 278.5 nm and 548.5 nm, respectively. The proposed system provided a limit of detection of 0.016 mg L-1 and a limit of quantitation of 0.053 mg L-1, and a detection range of 0.05-30.00 mg L-1. In addition, the tolerance level of the detection approach to interference by other vapor-generated species was successfully improved by placing another paper strip coated with a solution of saturated lead acetate in front of the detection paper strip. This developed approach offered a simple and fast, yet accurate and selective detection of arsenic contaminated in water samples. In addition, the mechanism of fluorescent quenching was also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.