Abstract

Short polymer nanofibers were successfully fabricated by electrospinning, a solution composed of a polymer cellulose acetate, acetone, and dimethyl acetamide. The concentration of the polymer in the solution ranged from 13 to 15 wt% and was the most important factor in the fabrication of short nanofibers. The lengths of the short nanofibers were changed via the flow rate of the polymer solution along with the applied voltage. The length was increased by increasing the flow rate of the solution, and it was decreased with an increase in the applied voltage, resulting in a length of short nanofibers that could be controlled at 37–670 μm. The polymer solution jet ejected straight from the needle tip, but then it was spread due to lateral perturbations on the surface of the polymer solution. A rapid increase in the repulsive force from surface charges combined longitudinal forces from the applied voltage split the solution jet and segmented the nanofibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.