Abstract

Highly hydrophobic silk fabric surfaces were successfully fabricated using a simple one-step atomic layer deposition (ALD) process. The surface morphology, chemical composition, and structure of bare silk fabric and silk fabrics coated with titanium dioxide (TiO2) subjected to 800 and 1600 ALD cycles were measured using scanning electron microscopy (SEM), field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning probe microscopy (SPM). The surface wettability of the silk fabrics was evaluated by determining their static water contact angles (WCAs) and roll-off angles. The results suggest that the good hydrophilicity of the surfaces of bare silk fabrics can be changed to high hydrophobicity by the application of TiO2 nanoparticles to their surfaces using ALD. The high hydrophobicity achieved can be attributed to the increase in roughness of the silk fabric surface. The laundering durability of TiO2-coated silk fabrics is greatly improved by increasing the thickness of the ALD TiO2 films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.