Abstract

A simple network approach has been developed to simulate the movement of pollutant within urban areas. The model uses estimates of pollutant exchange obtained from velocity measurements in experiments with various regular obstacle arrays. The transfer of tracer material was modelled using concepts of advection along streets, well-mixed flow properties within street segments and exchange velocities (akin to aerodynamic conductances) across side and top facets of the street segments. The results predicted both the centreline concentration and lateral dispersion of the tracer with reasonable accuracy for a range of packing densities and wind directions. The basic model's concentration predictions were accurate to better than a factor of two in all cases for the region from two obstacle rows behind a source located within the array to around eight rows behind, a range of distances that falls into the so-called “neighbourhood-scale” for dispersion problems. The results supported the use of parameterized rates of exchange between regions of flow as being useful for fast, approximate dispersion modelling. It was thought that the effects of re-entrainment of tracer back into the canopy were of significance, but modelling designed to incorporate these effects did not lead to general improvements to the modelling for these steady-state source experiments. The model's limitations were also investigated. Chief amongst these was that it worked poorly among tall buildings where the well-mixed assumption within street segments was inadequate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.