Abstract

Abstract. Knowing the soil water retention curve (WRC) is essential for analyzing soil hydraulic behavior within the vadose zone. The van Genuchten (VG) soil hydraulic equation is one of the most frequently adopted models to parameterize the WRC. Some measured water retention points are needed to fit the VG model, but direct measurement of water content versus matric potential is expensive and time consuming. A pedotransfer function (PTF) enables indirect determination of a WRC from basic soil information. The typical method employed to derive a PTF using the VG model (VG-PTF) is to establish a mathematical relationship between the parameters of the VG model and basic soil data. However, both establishing and reusing a VG-PTF for new soils are challenging due to several reasons, such as over-parameterization, low correlation between basic soil data and VG parameters, and interdependency among parameters. In this study, a nonparametric approach based on the k nearest neighbor technique was designed and tested to establish a VG-PTF. A subset of soils from the UNSODA database (n = 554)) and a data set from Belgium (n = 69) were used as the model development and validation data sets, respectively. The proposed PTF showed reasonable accuracy and reliability and was comparable to well-known parametric VG-PTFs available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.