Abstract

In this present work, electrochemical detection and quantification of formalin (FAL) trace present in mushroom (Agaricus bisporus) was premeditated using a cerium oxide nanoparticle modified graphite paste electrode (CeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> @GP). Cerium oxide (CeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) nanoparticles (nps) were synthesized through the sol-gel technique from cerium nitrate hexahydrate using poly (ethylene glycol) as a capping agent. The prepared CeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> nps were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques which revealed the successful formation of the cubic phase of CeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> having crystallite size 4.84 nm. The prepared CeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> nps were used to modify the graphite paste electrode (bare GP). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were utilized to study comparative electroanalytical features of the fabricated electrodes. Under optimized experimental conditions, CeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> @GP exhibited a wide linear range from 25 μM-1mM and a limit of detection of 1 μM. Moreover, CeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> @GP featured high repeatability, reproducibility, and long-term stability. The electrode exhibited high selectivity for FAL in the presence of interferences like ethanol, methanol, formic acid, benzaldehyde, and acetone. CeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> @GP demonstrated exceptional aptitudes in electrochemical behavior when subjected to mushroom extract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call