Abstract
We present a new multigrid scheme for solving the Poisson equation with Dirichlet boundary conditions on a Cartesian grid with irregular domain boundaries. This scheme was developed in the context of the Adaptive Mesh Refinement (AMR) schemes based on a graded-octree data structure. The Poisson equation is solved on a level-by-level basis, using a “one-way interface” scheme in which boundary conditions are interpolated from the previous coarser level solution. Such a scheme is particularly well suited for self-gravitating astrophysical flows requiring an adaptive time stepping strategy. By constructing a multigrid hierarchy covering the active cells of each AMR level, we have designed a memory-efficient algorithm that can benefit fully from the multigrid acceleration. We present a simple method for capturing the boundary conditions across the multigrid hierarchy, based on a second-order accurate reconstruction of the boundaries of the multigrid levels. In case of very complex boundaries, small scale features become smaller than the discretization cell size of coarse multigrid levels and convergence problems arise. We propose a simple solution to address these issues. Using our scheme, the convergence rate usually depends on the grid size for complex grids, but good linear convergence is maintained. The proposed method was successfully implemented on distributed memory architectures in the RAMSES code, for which we present and discuss convergence and accuracy properties as well as timing performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.