Abstract
The disturbing motion of plane Couette and Poiseuille flow is described using three parameters: two amplitudes corresponding to the disturbance of the parallel flow and the cellular motion, respectively, and the angle ϕ0 which defines the orientation of the vortex blobs with respect to the parallel flow. Equations of motion for these parameters are obtained using a Ritz-Galerkin method. For Reynolds numbers above a critical value sufficiently big disturbances will grow until a steady finite amplitude state is achieved. The energy of the disturbance remains finite, in spite of the highly truncated field representation using only three parameters. This is possible because of the nonlinear dependence of the field functions on ϕ0. The critical values of Reynolds number, above which finite amplitude states exist, are computed for the plane Couette flow and the Poiseuille channel flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.