Abstract

The design of thrusters inspired by the locomotion of fishes is currently investigated in many research centres for unmanned underwater vehicles. Fast fishes propel themselves in water through the rhythmic motion of their tail. Propulsion is achieved by means of the periodic shedding of vortex structures by the edges of the tail. Thrust is produced because the vortices give rise to a steady jet of fluid which leaves the tail in the direction which is opposite to the forward motion of the fish. Assuming that the fish tail can be modelled by a two-dimensional plate in steady forward motion and oscillating with a combination of harmonic heaving and pitching movements, Brown and Michael’s model is presently used to determine the dynamics of the vortex structures shed by plate edges. Numerical simulations have been carried out to investigate the effects on the flow field of varying the physical parameters of the phenomenon. The knowledge of the strength and trajectory of the vortex structures shed by the plate allows the characteristics of the jet producing the thrust to be quantified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.