Abstract
Abstract The classic Stommel–Arons problem is revisited in the context of a basin with a general bottom topography containing an equator. Topography is taken to be smoothly varying and, as such, there are no vertical side walls in the problem. The perimeter of the abyssal basin is thus defined as the curve along which the layer depth vanishes. Because of this, it is not required that the component of horizontal velocity perpendicular to the boundary curve vanish on the boundary. Planetary geostrophic dynamics leads to a characteristic equation for the interface height field in which characteristics typically originate from a single point located on the eastern edge of the basin at the equator. For a simple choice of topography it is possible to solve the problem analytically. In the linear limit of weak forcing, the solution exhibits an intensified flow on the western edge of the basin. This flow is pan of the interior solution and is thus not a traditional, dissipative western boundary current. When the ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.