Abstract

BackgroundQuorum sensing (QS) is a form of gene regulation based on cell-density that depends on inter-cellular communication. While there are a variety of models for bacterial colony morphology, there is little work linking QS genes to movement in an open system.ResultsThe onset of swarming in environmental P. aeruginosa PUPa3 was described with a simplified computational model in which cells in random motion communicate via a diffusible signal (representing N-acyl homoserine lactones, AHL) as well as diffusible, secreted factors (enzymes, biosurfactans, i.e. "public goods") that regulate the intensity of movement and metabolism in a threshold-dependent manner. As a result, an "activation zone" emerges in which nutrients and other public goods are present in sufficient quantities, and swarming is the spontaneous displacement of this high cell-density zone towards nutrients and/or exogenous signals. The model correctly predicts the behaviour of genomic knockout mutants in which the QS genes responsible either for the synthesis (lasI, rhlI) or the sensing (lasR, rhlR) of AHL signals were inactivated. For wild type cells the model predicts sustained colony growth that can however be collapsed by the overconsumption of nutrients.ConclusionWhile in more complex models include self-orienting abilities that allow cells to follow concentration gradients of nutrients and chemotactic agents, in this model, displacement towards nutrients or environmental signals is an emergent property of the community that results from the action of a few, well-defined QS genes and their products. Still the model qualitatively describes the salient properties of QS bacteria, i.e. the density-dependent onset of swarming as well as the response to exogenous signals or cues.ReviewersThis paper was reviewed by Gáspár Jékely, L. Aravind, Eugene V. Koonin and Artem Novozhilov (nominated by Eugene V. Koonin).

Highlights

  • Quorum sensing (QS) is a form of gene regulation based on cell-density that depends on inter-cellular communication

  • Biological model We compare the behavior of environmentally isolated P. aeruginosa PUPa3 and two derivative acylated homoserine lactone (AHL) QS mutants (Table 1)

  • Where the functions of a few, key QS genes and gene products determine cell behavior; b) instead of studying patterns of colony morphology, our goal is to study the onset of swarming in terms of population size and speed of advancement; c) we study this phenomenon using a specific biological object, the rhizosphere colonizer P. aeruginosa PUPa3 and its engineered mutants; d) the computational model is based on individual cells with threshold-based response behavior

Read more

Summary

Introduction

Quorum sensing (QS) is a form of gene regulation based on cell-density that depends on inter-cellular communication. Quorum sensing (QS) is a form of gene regulation based on cell-density, which depends on inter-cellular communication involving the production of and response to signaling molecules [1] (Figure 1A). A typical AHL-dependent QS system is mediated by two proteins belonging to the LuxI-LuxR protein families; LuxI-type proteins are responsible for synthesizing AHLs which, in turn, interact directly at quorum concentration with the cognate LuxR-family protein. This complex is able to affect target gene transcription [2]. The QS regulatory network contains a positive feedback loop that is thought to be necessary for its switch-like-behavior as well as for the stability of its 'on' and 'off' states with respect to molecular noise [2,3,4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.