Abstract

A simple model is proposed for predicting the dimensionless isovel contours in straight ducts and open channels. It is assumed that each element of the boundary influences the velocity at an arbitrary point in the cross section. Then, the total effect of the boundary can be obtained using integration along the wetted perimeter. In this paper, power and logarithmic laws are used, while any velocity profile can be applied in the model. The model is applied to calculate the normalized isovel contours in rectangular channels. Then they are used, in combination with a single-point velocity measurement at a cross section of the uniform flow, to estimate the discharge. The kinetic energy and momentum correction factors, and the ratio of maximum to mean velocity, are also calculated from isovel patterns. Calibration and validation of the model are carried out by comparing the results obtained with measurements of the velocity in the main flow direction along the centerline of a rectangular flume as well as in the transverse direction. Each point of measurement can be used to estimate the discharge. Then, the estimated discharge is compared with the actual measured one. Depending on the position of the measurement, the deviation of the calculated and measured discharges will be altered. Model predictions are well correlated with experimental data for rectangular open channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.