Abstract

Context: Multiwavelength observations of supernova remnants can be explained within the framework of diffusive shock acceleration theory, which allows effective conversion of the explosion energy into cosmic rays. Although the models of nonlinear shocks describe reasonably well the nonthermal component of emission, certain issues, including the heating of the thermal electron plasma and the related X-ray emission, still remain open. Methods: Numerical solution of the equations of the Chevalier model for supernova remnant evolution, coupled with Coulomb scattering heating of the electrons. Results: The electron temperature and the X-ray thermal Bremsstrahlung emission from supernova remnants have been calculated as functions of the relevant parameters. Since only the Coulomb mechanism was considered for electron heating, the values obtained for the electron temperatures should be treated as lower limits. Results from this work can be useful to constrain model parameters for observed SNRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.