Abstract
In the food industry, there is a growing demand for cost-effective methods for the inline inspection of food items able to non-invasively detect small foreign bodies that may have contaminated the product during the production process. Microwave imaging may be a valid alternative to the existing technologies, thanks to its inherently low-cost and its capability of sensing low-density contaminants. In this paper, a simple microwave imaging system specifically designed to enable the inspection of a large variety of food products is presented. The system consists of two circularly loaded antipodal Vivaldi antennas with a very large operative band, from 1 to 15 GHz, thus allowing a suitable spatial resolution for different food products, from mostly fatty to high water-content foods. The antennas are arranged in such a way as to collect a signal that can be used to exploit a recently proposed real-time microwave imaging strategy, leveraging the inherent symmetries that usually characterize food items. The system is experimentally characterized, and the achieved results compare favorably with the design specifications and numerical simulations. Relying on these positive results, the first experimental proof of the effectiveness of the entire system is presented confirming its efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.