Abstract

A simplified MHD model is proposed that explains characteristic features of dipolarization fronts observed by the five‐probe THEMIS mission, and in particular the recurrent or multiple fronts, as structures arising from the nonlinear evolution of the interchange instability of the initial reconnection ejecta in the terrestrial magnetotail. Modeling the effects of the magnetic field curvature and plasma braking by an effective gravity and imposing an initial seed perturbation consistent with the observed dawn‐dusk scale of fronts is shown to reproduce the observed variations of the north‐south magnetic field, bulk flow plasma velocity, number density and pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.