Abstract

A new method based on thermogravimetric analysis was developed to measure the graphite content in battery material mixture. This approach exploits the thermochemical reduction of cathodic Li-transition metal oxides with anodic graphite at elevated temperatures under an inert atmosphere. Using known composition artificial mixtures, a linear correlation between cathode mass loss and sample graphite content was observed. The method was validated using industrial black mass samples and characterized traditionally to estimate and rationalize potential error sources. Thermal degradation profiles of industrial battery waste reflected those in the artificial system, demonstrating its applicability. This work also demonstrates that thermogravimetric degradation profiles can distinguish between a cathode consisting of single or multiple Li-metal oxides. Although accuracy depends on active component mixture content and impurities, it is demonstrated that the method is useful for a fast graphite content estimation. Unlike other graphite characterization techniques, the method proposed is simple and inexpensive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.