Abstract

Accurate opacity and equation of state (EOS) data are important parameters for reliable modeling and understanding many phenomena of high energy density physics. However, they are difficult to obtain either theoretically or experimentally especially for high-Z plasmas. In this paper, we proposed a simple method to verify the opacity and EOS of high-Z plasmas in rarefactive states, which is build on the two key aspects of ablation processes, i.e., the propagation of heatwave into materials and the hydrodynamic expansion of the blow-off plasmas. Based on the integrated analysis of the Au foil burnthrough and foam-confined plasma expansion experiments performed on the Shenguang II and Shenguang III prototype laser facilities, we suggested two semi-empirical multipliers to adjust the opacity and EOS of Au plasma. These adjusted opacity and EOS may then provide a foundation for other radiation hydrodynamic simulations under similar drive conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.