Abstract

Assays of ribonucleotide reductase in extracts of Detroit 98 (human) cells were found to be complicated by the rapid depletion of the substrate (CDP) by nucleoside diphosphate kinase. Assays of either 100,000 g supernatants or ammonium sulfate-fractionated extracts resulted in the conversion of >90% of the substrate to CTP within 2 min. It was therefore desirable to separate nucleoside diphosphate kinase from ribonucleotide reductase. Chromatography of the fractionated extract on an ATP-agarose column resulted in the delivery of nondissociated ribonucleotide reductase in the void volume and the retention of >99.9% of the nucleoside diphosphate kinase. The kinase could be eluted by 2 m m ATP. The ribonucleotide reductase was recovered from this commercially available gel with an apparent yield of >200%. It could be accurately assayed with only minimal extraneous depletion of substrate. Furthermore, it was stable to storage at −80°C. Tris-HCl was found to inhibit the enzyme. When HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)-Na buffer was used in place of Tris-HCl, the rate of CDP reduction was increased by 2.5-fold. Since the above procedure selectively removes nucleoside diphosphate kinase from crude preparations of ribonucleotide reductase, it should have general applicability for purifying ribonucleotide reductase from other sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.