Abstract
A series of ordered mesoporous carbons containing magnetic Ni nanoparticles (Ni-OMCs) with a variety of Ni loadings was made by a simple one-pot synthetic procedure through carbonization of phenolic resin-Pluronic block copolymer composites containing various amount of nickel nitrate. Such composite materials were characterized by N2 sorption, XRD, and STEM. Ni-OMCs exhibited high BET surface area, uniform pore size, and large pore volume without obvious pore blockage with a Ni loading as high as 15 wt%. Ni nanoparticles were crystalline with a face-center-cubic phase and observed mainly in the carbon matrix and on the outer surface as well. The average particle size of Ni nanoparticles was dependent on the preparation (carbonization) temperature and Ni loading; the higher the temperature was used and the more the Ni was incorporated, the larger the Ni nanoparticles were observed. One of the applications of Ni-OMCs was demonstrated as magnetically separable adsorbents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.