Abstract

Protein side-chain motions are involved in many important biological processes including enzymatic catalysis, allosteric regulation, and the mediation of protein-protein, protein-DNA, protein-RNA, and protein-cofactor interactions. NMR spectroscopy has long been used to provide insights into the motions of side-chain groups. Currently, the method of choice for studying side-chain dynamics by NMR is the measurement of methyl (2)H autorelaxation. Methyl (2)H autorelaxation exhibits simple relaxation mechanisms and can be straightforwardly converted to meaningful dynamic parameters. However, methyl groups can only be found in 6 of 19 side-chain bearing amino acids. Consequently, only a sparse assessment of protein side-chain dynamics is possible. Therefore, there is a significant interest in developing novel methods of studying side-chain motions that can be applied to all types of side-chains. Here, we show how side-chain chemical shifts can be used to determine the magnitude of fast side-chain motions in proteins. The chemical shift method is applicable to all side-chain bearing residues and does not require any additional measurements beyond standard NMR experiments for backbone and side-chain assignments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.