Abstract

Angiogenesis is an essential process for the establishment, development, and dissemination of several malignant tumors including bladder cancer. The hypoxic condition promotes the stabilization of hypoxia-inducible factor 1 alpha (HIF-1α), which translocates to the nucleus to mediate angiogenic factors including the vascular endothelial growth factor A (VEGF-A). AnaeroGen system was developed for microbiology area to create a low oxygen tension required to the growth of anaerobic bacteria. Here, we hypothesized the use of AnaeroGen system to induce hypoxia in T24 human bladder carcinoma cells, in order to promote the overexpression of VEGF-A. T24 cells were cultured in six-well plates containing McCoy medium. Exposures of T24 cells to hypoxia for 1, 8, 24, and 48h were performed using the Oxoid AnaeroGen system, while T24 cells under normoxia were used as control. The expression of VEGF-A and HIF-1α was analyzed by real-time PCR. ELISA for HIF-1α was carried out. The VEGF-A expression increased significantly by Oxoid AnaeroGen-induced hypoxia in a time-depending manner, reaching the peak in 48h of hypoxia. Although HIF-1α mRNA was not changed, HIF-1α protein was increased in the presence of hypoxia, reaching a peak at 8h. These results demonstrated that the Oxoid AnaeroGen system is a simple method to expose T24 cells to hypoxia and efficiently to upregulate VEGF expression in T24 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.