Abstract

Catalyzed by Fe, novel a coral-like boron nitride (BN) micro-/nanostructure was synthesized from B2O3 by a ball milling and annealing process. Observations of the morphology of the product indicated that the coral-like BN micro-/nanostructure consists of a bamboo-shaped nanotube stem and dense h-BN nanoflakes growing outward on the surface of the nanotube. Experimental results showed that the morphology of the BN nanotube was greatly dependent on the anneal process parameters. With the annealing time increasing from 0.5 h to 4 h, the morphology developed from smooth BN nanotubes, with a diameter size of around 100 nm, to rough, coral-like boron nitride with a large diameter of 3.6 μm. The formation mechanism of this coral-like BN micro-/nanostructure is a two-stage growth process: bamboo-shaped BN nanotubes are first generated through a vapor-liquid-solid (VLS) mechanism and then nanoflakes grow surrounding the surface of the nanotube. Acid pickling and a hydrolysis process were carried out to remove Fe, iron nitrogen and unreacted B2O3 impurities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.