Abstract

ABSTRACTGlyphosate (GLYP) and glufosinate (GLUF) are phosphorus-containing amino acid type herbicides that are used worldwide. With their rising consumptions, fatal intoxication cases due to these herbicides, whether accidental or intentional, cannot be ignored. Both compounds are difficult to detect, and their pretreatment for instrumental analysis are complicated and time-consuming. Our aim was to develop a simple and rapid quantification method for the two herbicides and their metabolites with liquid chromatography/tandem mass spectrometry (LC/MS/MS). We also compared 2-amino-4-phosphonobutyric acid and DL-2-amino-5-phosphonopentanoic acid as alternative internal standards (IS) to GLYP13C215N. Herbicide-containing specimens were highly diluted, evaporated to dryness, and derivatized with acetate/acetic anhydride and trimethyl orthoacetate for 30 min. at 120°C. Our optimized LC conditions successfully separated the target analytes, with acceptable linearities (R2>0.98) and matrix effects (65%–140%). Accuracy and precision ranged from 80.2 % to 111 %, and from 1.3 % to 13 % at the higher concentration, respectively.The concentration of the herbicides and their metabolites were investigated in a postmortem case of suspected herbicide poisoning cases, in which we detected GLYP and its metabolites. Using one of the three ISs, the GLYP concentrations ranged from 3.1 to 3.5 mg/mL, and 3.3 to 4.5 mg/mL in plasma and urine, respectively; GLYP metabolite concentrations in plasma and urine were 18 to 20 μg/mL and 44 to 54 μg/mL. We thus succeeded in developing a rapid method without extraction for measuring GLYP and GLUF along with their metabolites, and demonstrated its practical applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.