Abstract

Organophosphate esters (OPEs) and their diester metabolites have been frequently found in various environmental matrices and regarded as emerging environmental pollutants, whereas data on their occurrence in foods and human matrices are still limited. In this study, a novel and simple procedure was developed to simultaneously determine 14 OPEs and 6 diester metabolites in dairy products and human milk. After enzymatic hydrolysis by β-glucuronidase/arylsulfatase, a freeze-dried milk sample was extracted with acetonitrile and purified by solid-phase extraction. Subsequently, all target compounds were determined by HPLC-ESI-MS/MS. Linearity, limits of detection (LODs), recovery, precision, and matrix effects of the proposed methodology were validated, and the parameters of HPLC-ESI-MS/MS were optimized. LODs for OPEs and their diester metabolites were from 0.001 to 0.02 ng/mL, and limits of quantification (LOQs) were 0.01-0.3 ng/mL. Average recoveries at two spiked levels ranged between 67.3 and 121%, with relative standard deviation lower than 20.7%. A test for matrix effects showed that most analytes presented signal suppression, and isotopically labeled ISs were essential for compensating for the matrix effects. Finally, OPEs and their metabolites both showed high detecting frequencies in real samples, which indicated that these emerging pollutants were ubiquitous in foods and the human body, and the impact of the diester metabolites on population exposure must be included in exposure assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call