Abstract

We established a simple method for measuring and quantifying uptake dynamics of hyperpolarized (HP) (129)Xe in mouse brain, which includes application of a saturation recovery pulse sequence under controlled flow of HP (129)Xe. The technique allows pursuit of the time-dependent change in (129)Xe nuclear magnetic resonance signal in the uptake process without effect from radiofrequency destruction of the polarization and the dynamics in mouse lung. The uptake behavior is well described by a simple model that depends only on a decay rate constant comprising cerebral blood flow and the longitudinal relaxation rate of HP (129)Xe in the brain tissue. The improved analysis enabled precise determination of the decay rate constant as 0.107+/-0.013 s(-1) (+/-standard deviation, n=5), leading to estimation of longitudinal relaxation time, T(1i), as 15.3+/-3.5 s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.