Abstract

A facile, inexpensive, and general approach is explored for the fabrication of transparent silica/organic silicon hybrid sol, which could form transparent hydrophobic coatings on different substrates conveniently. The sol was prepared by using hexamethyldisilazane (HMDS) as a surface-modifying agent and the source of base catalyst required for the hydrolysis of tetraethoxysilane (TEOS). The resulting silica-based coatings on glass slide have shown an optical transmission over the visible range up to 89% (in reference to 100% transmission defined by a plain glass substrate) and high thermal stability. The water contact angle of the film reached 152○. Hydrophobic coatings with excellent optical transmittance were also successfully formed on writing paper and aluminum foils. The transparent hydrophobic silica-based hybrid sol will have potential applications in creating outdoor building glass, protecting paper files from moisture and preventing metals from corrosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.