Abstract
Dye-sensitized solar cells (DSCs) are photoelectrochemical photovoltaics based on complicated electrochemical reactions. The modeling and simulation of DSCs are powerful tools for evaluating the performance of DSCs according to a range of factors. Many theoretical methods are used to simulate DSCs. On the other hand, these methods are quite complicated because they are based on a difficult mathematical formula. Therefore, this paper suggests a simple and accurate method for the modeling and simulation of DSCs without complications. The suggested simulation method is based on extracting the coefficient from representative cells and a simple interpolation method. This simulation method was implemented using the power electronic simulation program and C-programming language. The performance of DSCs according to the TiO2 thickness was simulated, and the simulated results were compared with the experimental data to confirm the accuracy of this simulation method. The suggested modeling strategy derived the accurate current–voltage characteristics of the DSCs according to the TiO2 thickness with good agreement between the simulation and the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.