Abstract

The spherical indentation technique provides an easy way to evaluate the integrity of in‐service structures because it is nondestructive. In this study, a simple method was proposed to measure mechanical properties such as the yield strength, the ultimate tensile strength, and the strain hardening exponent from the indentation curve at a large indentation depth, which is 0.4 times of the indenter radius. Based on finite element analyses, a simple function was proposed to relate representative stress to indentation data. Besides, representative strains at different indentation depths were identified according to the load‐depth curves from simulations. The calculated plastic properties from the developed method were compared well with experimental results.

Highlights

  • Mechanical properties of materials such as ultimate tensile strength (UTS) and yield strength are considered to be important for evaluating the integrity of structures [1, 2]

  • The representative stress was defined as the averaged true stress under the indenter, while the representative strain was defined by using tangent function or sine function [14], which leads to different accuracies of the calculation results

  • The σy can only be fitted as 52.8 MPa, which is much smaller than the yield strength (83.9 MPa) of 2219Al. is phenomenon was reported in literatures

Read more

Summary

Introduction

Mechanical properties of materials such as ultimate tensile strength (UTS) and yield strength are considered to be important for evaluating the integrity of structures [1, 2]. Some researchers directly relate the indentation parameters to the tensile strain-stress points. Jeon et al [15] found that, compared with the tangent function, the sine function results in a too large work hardening exponent for materials that obey Hollomon hardening law. Both the sine function and the tangent function contain the parameter of contact depth, which is difficult to be measured in practical. Other researchers extract the elastoplastic properties from a closedform expression of the indention load [16] or work [17] as a function of parameters of the Hollomon hardening law. The strain hardening exponent in the equation is in contradiction with the definition of the representative stress

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.