Abstract
The synthesis of Bi4Ti3O12 and CuFe2O4 powders was achieved using a conventional solid-state reaction and the Sol–Gel method, respectively. A novel p–n heterojunction photocatalyst CuFe2O4/Bi4Ti3O12 was subsequently prepared through ball milling. The structures, morphologies, and optical properties of the photocatalysts were comprehensively characterized. The transmission electron microscopy (TEM) images showed a clear interface between CuFe2O4 and Bi4Ti3O12, indicating that a heterojunction between CuFe2O4 and Bi4Ti3O12 was formed during ball milling. In addition, the photocatalytic activity was evaluated based on the photocatalytic degradation of methyl orange (MO). The results indicated that the photocatalytic activity of the p–n heterojunction photocatalyst CuFe2O4/Bi4Ti3O12 was higher than that of Bi4Ti3O12 alone. The enhanced photocatalytic activity could be attributed to the formation of a heterojunction between CuFe2O4 and Bi4Ti3O12, which suppressed the recombination of photogenerated electron–hole pairs. We also investigated the effects of procedure time and dispersant (H2O) during ball milling on the photocatalytic activity. The mechanisms underlying the observed photocatalytic activity were also described based on the semiconductor energy band theory and p–n junction principle. Moreover, the analysis of the radical scavengers confirmed that •O2− and h+ were the primary reactive species to cause the degradation of the MO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.