Abstract

The process of fabricating chambers is becoming more important for inkjet printheads. However, there are some problems with the majority of present fabrication methods, such as nozzle structural deformation, blocked chambers, and collapsed chambers. In this paper, we propose a new process for preparing printhead chips by bonding tantalum nitride thin-film heaters and SU-8 chamber film using UV curing optical adhesive. This process simplifies the preparation process of printhead chips and overcomes the limitations of the traditional adhesive bonding process. Firstly, a chamber film was prepared by the molding lithography process based on a PDMS mold. The chamber film was then bonded with the membrane heater by the adhesive bonding process based on film transfer to form a thermal bubble printhead chip. Finally, the chip was integrated with other components to form a thermal inkjet printhead. The results show that the overflow width of bonding interface of 3.10 μm and bonding strength of 3.3 MPa were achieved. In addition, the printhead could stably eject polyvinyl pyrrolidone binder droplets, which are expected to be used for binder-jetting printing of powder such as ceramics, metals, and sand molds. These results might provide new clues to better understand the adhesive bonding process based on film transfer and the new applications of inkjet printheads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call