Abstract

A novel, simple, and reproducible method for cultivating pathological tissues obtained from human eyes during surgery was developed using viscoelastic material as a tissue adherent to facilitate cell attachment and expansion and calcium imaging of cultured cells challenged by mechanical and acetylcholine (ACh) stimulation as well as inflammatory studies. Anterior lens capsule-lens epithelial cells (aLC-LECs) from cataract surgery and proliferative diabetic retinopathy (PDR) fibrovascular epiretinal membranes (fvERMs) from human eyes were used in the study. We hereby show calcium signaling in aLC-LECs by mechanical and acetylcholine (ACh) stimulation and indicate presence of ACh receptors in these cells. Furthermore, an ex vivo study model was established for measuring the inflammatory response in fvERMs and aLC-LECs upon TNFα treatment.

Highlights

  • Human eye disease modeling requires well established ex vivo cell cultures

  • We developed a simple method for attaching eye tissue explants to the surface of a Petri dish by using surgical grade viscoelastic material, otherwise routinely used in ophthalmic surgery [1]

  • All tissue collection complied with the guidelines of the Helsinki Declaration and was approved by the National Medical Ethics Committee of Slovenia; all patients signed an informed consent form before surgery which was performed at the Eye Hospital, University Medical Centre (UMC), Ljubljana, Slovenia

Read more

Summary

Introduction

Human eye disease modeling requires well established ex vivo cell cultures Such cultures allow studying diseases of interest at a cellular level using multiple techniques. They provide possibility to grow primary human eye cells with the purpose of repairing a defect and eventually transplanting them back to the patient in an autologous or heterologous manner. ERMs are a collection of cells and extracellular matrix that occur in the inner, vitreal surface of the central retina. They have contractile properties and can lead to visual disturbance and metamorphopsia (distorted vision) due to their effect on the underlying retina. FvERMs represent the final and devastating stage of PDR and form, due to heavy hypoxia, retinal ischemia and unbalanced glucose metabolism, the result of which is a state of chronic inflammation [2, 3]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call