Abstract

A simple method is presented for calculating the stress and strain distributions arising from an initially uniformly strained quantum dot of arbitrary shape buried in an infinite isotropic medium. The method involves the evaluation of a surface integral over the boundary of the quantum dot and is therefore considerably more straightforward to implement than alternative stress evaluation techniques. The technique is ideally suited to calculating strain distributions within disordered arrays of pyramidal quantum dots prepared by Stranski–Krastanow growth. The strain distribution for a cuboidal quantum dot is presented and compared to that of a rectangular quantum wire.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call