Abstract

In this paper, the responses of multidegree of freedom (MDOF) structures on sliding foundations, subjected to harmonic or random base motions, are investigated taking into consideration the variations of friction forces. The variation of friction force is a consequence of variation of friction coefficient, which depends on such parameters as relative velocity and the existing pressure. Modelling of the friction force under the foundation raft is accomplished by using a fictitious rigid link with a rigid-perfectly plastic material. This results in identical equations of motion for the sliding structure, both in the sliding and nonsliding (stick) phases and considerably decreases the required number of time steps for the nonlinear analysis. Since the force in the link is of constant value, to consider the varying friction force, a compensatory force, which is the difference between the exact friction force and the constant force in the rigid link, is applied to the foundation raft. A model of variable friction coefficient for Teflon-steel interfaces is used for the assessment of the method and the results are compared with existing literature, through which, the capability of the method is illustrated. It is shown that by using exact model of friction lower values for the superstructure responses are predicted compared with those obtained by using Coulomb friction model. Furthermore the effect of the stiffness of the structure on the differences between the results of the two models is also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call