Abstract

Summary Catch bonds are protein-ligand bonds that become more difficult to break as the applied force increases, a counterintuitive phenomenon that has not yet been reproduced in synthetic systems. Here, we have demonstrated that a simple mechanical design based on a tweezer-like mechanism can exhibit catch bond characteristics under thermal excitations. The tweezer has a force-sensitive switch that controls the transition of the system to a high-ligand-affinity state with additional ligand-tweezer interactions. Applying kinetic theory to a two-mass-two-spring idealized model of the tweezer, we show that by tuning the shape of the switch and the ligand-tweezer interaction energy landscapes, we can achieve greater lifetimes at larger force levels. We validate our theory with molecular dynamics simulations and produce a characteristic lifetime curve reminiscent of catch bonds. Our analysis reveals minimal design guidelines for reproducing the catch bond phenomenon in synthetic systems such as molecular switches/foldamers, DNA linkers, and nanoparticle networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.