Abstract

Coupled multi-scale finite element analyses have gained traction over the last years due to the increasing available computational resources. Nevertheless, in the pursuit of accurate results within a reasonable time frame, replacing these high-fidelity micromechanical simulations with reduced-order data-driven models has been explored recently by the modelling community. In this work, two classes of machine learning models are trained for a porous hyperelastic microstructure to predict (i) whether the microscopic equilibrium problem is likely to fail and (ii) the stress–strain response. The former may be used to identify critical macroscopic points where one may fall back to the high-fidelity analysis and possibly apply convergence bowl-widening techniques. For the latter, both a linear regression with polynomial features and artificial Neural Networks have been used, and the required stress–strain derivatives for solving the equilibrium problem have been derived analytically. A weight regularisation is introduced to stabilise the tangent operator and several strategies are discussed for imposing null stresses in undeformed configurations for both regression models. The regression techniques, here analysed exclusively in the context of porous hyperelastic materials, evidence very promising prospects to accelerate multi-scale analyses of solids under large deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.