Abstract

A simple distributed Medium Access Control (MAC) protocol for cognitive wireless networks is proposed. It is assumed that the network is slotted, the spectrum is divided into a number of channels, and the primary network statistical aggregate traffic model on each channel is given by independent Bernoulli random variables. The objective of the cognitive MAC is to maximize the exploitation of the channels idle time slots. The cognitive users can achieve this aim by appropriate hopping between the channels at each decision stage. The proposed protocol is based on the rule of least failures that is deployed by each user independently. Using this rule, at each decision stage, a channel with the least number of recorded collisions with the primary and other cognitive users is selected for exploitation. The performance of the proposed protocol for multiple cognitive users is investigated analytically and verified by simulation. It is shown that as the number of users increases the user decision under this protocol comes close to the optimum decision to maximize its own utilization. In addition, to improve opportunity utilization in the case of a large number of cognitive users, an extension to the proposed MAC protocol is presented and evaluated by simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.