Abstract

It is a long-standing open question in combinatorial optimization whether the integrality gap of the subtour linear program relaxation (subtour LP) for the asymmetric traveling salesman problem (ATSP) is a constant. The study on the structure of this linear program is important and extensive. In this paper, we give a new and simpler LP relaxation for the ATSP. Our linear program consists of a single type of constraints that combine both the subtour elimination and the degree constraints in the traditional subtour LP. As a result, we obtain a much simpler relaxation. In particular, it is shown that the extreme solutions of our program have at most 2n − 2 non-zero variables, improving the bound 3n − 2, proved by Vempala and Yannakakis, for the ones obtained by the subtour LP. Nevertheless, the integrality gap of the new linear program is larger than that of the traditional subtour LP by at most a constant factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.