Abstract

Re-education of tumor-associated macrophages (TAMs) into M1-like macrophages (Mφ1) has become one of the aims of tumor immunotherapy. Injection of live bacteria has been applied for this purpose; however, an acute innate immune response might be caused in this progress, and therefore a bacteria-based strategy with great security is needed. In this study, the bacterial walls of Staphylococcus aureus were inserted into the bilayer of liposome to construct liposome-based bionic bacteria (Bio-Bac), and doxorubicin (DOX) was encapsulated to form DOX@Bio-Bac. DOX@Bio-Bac re-educated the THP-1-derived TAMs into Mφ1 in vitro, and subsequently inhibited the migration and invasion of CAL27 cells. In a mouse model of hepatocellular carcinoma with lymphatic metastasis, the re-education of TAMs was proved, and an effective inhibition of tumor growth and metastasis in mice was observed. The liposome-based bionic bacteria constructed in this study provide a new strategy for re-education of TAMs, replacing the bacterial therapy reported previously, and a more effective anti-tumor effect can be obtained by combining the chemotherapy drugs with this bionic bacterium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call