Abstract
We present a simple linear-time algorithm for computing the topological centroid and the canonical form of a plane graph. Although the targets are restricted to plane graphs, it is much simpler than the linear-time algorithm by Hopcroft and Wong for determination of the canonical form and isomorphism of planar graphs. By utilizing a modified centroid for outerplanar graphs, we present a linear-time algorithm for a geometric version of the maximum common connected edge subgraph (MCCES) problem for the special case in which input geometric graphs have outerplanar structures, MCCES can be obtained by deleting at most a constant number of edges from each input graph, and both the maximum degree and the maximum face degree are bounded by constants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.