Abstract

A circular-arc model $ {\mathcal {M}} =(C,\mathcal{A})$ is a circle Ctogether with a collection $\mathcal{A}$ of arcs of C. If no arc is contained in any other then $\mathcal{M}$ is a proper circular-arc model, and if some point of Cis not covered by any arc then ${\mathcal{M}}$ is an interval model. A (proper) (interval) circular-arc graph is the intersection graph of a (proper) (interval) circular-arc model. Circular-arc graphs and their subclasses have been the object of a great deal of attention in the literature. Linear time recognition algorithms have been described both for the general class and for some of its subclasses. For the isomorphism problem, there exists a polynomial time algorithm for the general case, and a linear time algorithm for interval graphs. In this work we develop a linear time algorithm for the isomorphism problem in proper circular-arc graphs, based on uniquely encoding a proper circular-arc model. Our method relies on results about uniqueness of certain PCA models, developed by Deng, Hell and Huang in [6]. The algorithm is easy to code and uses only basic tools available in almost every programming language.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.