Abstract

Following completion of the genome sequences of Xenopus tropicalis and X. laevis, gene targeting techniques have become increasingly important for the further development of Xenopus research in the life sciences. Gene knockout using programmable nucleases, such as TALEN and CRISPR/Cas9, has reached a level whereby we can readily and routinely perform loss-of-function analysis of genes of interest in these species. However, there is still room for improvement in gene knock-in techniques owing to some technical problems. To overcome these problems, several knock-in techniques have been developed. Among them, we introduce in this chapter a simple knock-in system mediated by microhomology mediated end joining repair. This protocol allows us to produce knock-in animals for in vivo tagging, promoter/enhancer traps, and transgenesis in both of these Xenopus species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call