Abstract

The viscous–inviscid interaction (VII) philosophy for modelling aerodynamic boundary layers is discussed. ‘Traditionally’ the shear-layer equations are solved with pressure prescribed by the inviscid flow, but then the solution breaks down in a singularity related to flow separation. In the quasi-simultaneous coupling approach this singularity is overcome by making use of an interaction law. A novel mathematical analysis is presented of the essential properties of such interaction laws, which is based on classical theory for non-negative matrices. The performance of a highly simplified interaction law is demonstrated for separated airfoil flow beyond maximum lift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.