Abstract
ABSTRACTThree-phase converters using diode or silicon-controlled rectifier (SCR) are widely employed to convert the commercial AC supply to DC. Such converters inject harmonics into the power supply system and thereby distort supply system voltage waveform. A simple input current wave-shape improvement technique using a shunt-connected harmonic current compensator is presented in this work, intended to reduce the total harmonic distortion (THD) of input current of three-phase diode and SCR phase-controlled rectifiers operating with inductive loads, by matching them to the specific converter as a combined package. The compensator proposed here comprises of a three-limb voltage source converter using insulated-gate bipolar transistor, working on instantaneous current and voltage measurements of the compensator only and not of the load. The technique uses a simple feedforward control for AC source current harmonic compensation of rectifiers without monitoring the AC line currents, i.e. use of online computation. The proposed system is simulated and tested on a laboratory prototype. The measured input current THD values without additional line filters are found to be below 8.3%, which is within acceptable limits, proving that the new technique is capable of compensating predetermined current harmonics of diode or SCRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.