Abstract

Cysteine is a vital biothiols that plays an important role in numerous physiological and pathological processes. The development of simple molecule tools for detection and analysis Cys in subcellar environment is significant for further exploring their pathophysiological. In this work, a simple but activated fluorescent probe AMIA was constructed with a donor-π-accepter (D- π -A) structure, which using an indanone as the electron-withdrawing unit acting as the fluorophore, dimethylamino group attached to the position 4 of the benzene ring as the electron-donating, two double bonds as the linker group, and the acryloyl ester group as the trigger and response unit. This probe AMIA was exhibited highly selective and sensitive response to Cys over other amino acids and ions under physiological conditions. It was found that AMIA showed a red turn-on fluorescence response at 630 nm towards Cys with a large stroke shift of 170 nm and a very low detection limit of 26.3 nM. HRMS, 1H NMR and TD-DFT calculation further confirmed that the response mechanism is the Cys triggered the addition-cyclization reaction between AMIA’ acryloyl group and Cys’ sulfhydryl and amino unit, leading to the release of a red fluorescent dye AMIA-OH, which can be identified by naked eyes. Furthermore, AMIA was successfully applied for simultaneous determination of Cys in living cells and zebrafish with lower cytotoxicity and good cell permeability. We hope that this novel indanone-based probe AMIA will provide a new reference for visualized Cys in other complex biological system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call