Abstract

Hydrogen peroxide (H2O2) is an important intermediate in biological and environmental systems, which is widely used in pharmaceutical, environmental protection, fuel cell and other fields. It is also the most important signal conducting molecule, second messenger and growth factor in Reactive Oxygen Species (ROS). The increase of intracellular H2O2 level is closely related to cancer and neurodegenerative diseases. Therefore, the detection of H2O2 is an important goal of clinical research. Herein, we synthesized molybdenum disulfide (MoS2) with a lattice spacing of 0.62 nm using a simple method, maintaining the excellent characteristics of MoS2 itself, and performing sensitive detection of H2O2. In this work, we use graphene oxide as the precursor, and use one-step hydrothermal method to synthesize three-dimensional molybdenum disulfide/reduced graphene oxide composite (MoS2/rGO). Graphene not only provides a support structure for the growth of MoS2, but also forms large number of pores in it. These channels greatly increase the specific surface area of the MoS2/rGO composite and provide a sufficient reaction environment for the reaction of H2O2 on the composite. Its greatly improves the sensitivity of the MoS2/rGO enzyme-free sensor. We have calculated that the enzyme-free sensor composed of this electrode has a good linear dependence on the H2O2 concentration in the range of 2 μM to 23.18 mM, and the detection limit is 0.19 μM. The enzyme-free sensor with simple preparation method is expected to be greatly developed in the clinical application of hydrogen peroxide sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.