Abstract

In this paper, a new higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates is developed. The present theory has only four unknowns, but it accounts for a parabolic variation of transverse shear strains through the thickness of the plate. A shear correction factor is, therefore, not required. Equations of motion are derived from Hamilton’s principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The obtained results are compared with 3D and quasi-3D solutions and those predicted by other plate theories. Results show that the present theory can achieve the same accuracy of the existing higher-order shear deformation theories which have more number of unknowns, but its accuracy is not comparable with those of 3D and quasi-3D models which include the thickness stretching effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.