Abstract

We report on the development and performance of a high-sensitivity purity-analysis technique for gaseous xenon. The gas is sampled at macroscopic pressure from the system of interest using a UHV leak valve. The xenon present in the sample is removed with a liquid-nitrogen cold trap, and the remaining impurities are observed with a standard vacuum mass-spectroscopy device. Using calibrated samples of xenon gas spiked with known levels of impurities, we find that the minimum detectable levels of N2, O2, and methane are 1×10−9, 160×10−12, and 60 ×10−12g/g, respectively. This represents an improvement of about a factor of 10000 compared to measurements performed without a cold trap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.